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Abstract 

 
High-definition (HD) maps can provide precise road information that enables an autonomous 
driving system to effectively navigate a vehicle. Recent research has focused on leveraging 
semantic segmentation to achieve automatic annotation of HD maps. However, the existing 
methods suffer from low recognition accuracy in automatic driving scenarios, leading to 
inefficient annotation processes. In this paper, we propose a novel semantic segmentation 
method for automatic HD map annotation. Our approach introduces a new encoder, known as 
the convolutional transformer hybrid encoder, to enhance the model's feature extraction 
capabilities. Additionally, we propose a multi-level fusion module that enables the model to 
aggregate different levels of detail and semantic information. Furthermore, we present a novel 
decoupled boundary joint decoder to improve the model's ability to handle the boundary 
between categories. To evaluate our method, we conducted experiments using the Bird's Eye 
View point cloud images dataset and Cityscapes dataset. Comparative analysis against state-
of-the-art methods demonstrates that our model achieves the highest performance. Specifically, 
our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 
1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic 
annotation. 
 
 
Keywords: Transformer; Semantic Segmentation; High-Definition maps; Automatic 
Annotation. 
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1. Introduction 

Autonomous driving systems enables vehicles to automatically navigate open roads, 
performing specific tasks such as robotaxi transport [1] and unmanned shipping container 
transport [2]. This area of research has gained significant popularity [3,4]. The acquisition of 
road information, particularly map information, is crucial for the smooth operation of 
autonomous driving system. These maps play a vital role in distinguishing between road areas 
and non-road areas, ensuring vehicles remain in safe zones and preventing potential accidents. 
Early studies relied on in-vehicle sensors like LiDAR and cameras to detect real-time road 
boundaries[5]. However, accurately capturing the diverse features of roads in real time poses 
significant challenges. Road boundaries are often narrow elongated, and irregular, making it 
difficult to define common features. Moreover, road boundaries are frequently obscured in 
real-world road scenes, greatly impacting the perception capabilities of autonomous driving 
systems. High-definition (HD) maps, a type of geographic information system, have become 
an essential component of autonomous driving systems. These maps encompass lane lines, 
road edges, zebra crossings, no-stopping areas, diversion areas, and other surface elements, 
offering precise geometric and semantic information about the static traffic environment. HD 
maps are manually labeled from bird’s-eye-view (BEV) images, which include high-resolution 
aerial images, overhead images from pre-built point-cloud maps, and front view images 
captured by CMOS sensors positioned on the front of the vehicle. As autonomous driving and 
map labeling continue to advance, point cloud data collected by a LiDAR system equipped 
with a mobile map system (MMS) undergoes preprocessing to generate BEV point cloud 
images. These images possess clearer clearer map elements and lower absolute error compared 
to front view images, making them suitable for certain scenarios such as vehicle occlusion 
scenes and HD map annotation. In this paper, we propose an automatically annotate method 
for HD maps utilizing BEV point cloud images. 

The challenge of HD map annotation primarily resides in element annotation. The task of 
marking road elements in urban areas for HD maps demands a substantial workforce. It entails 
labor-intensive efforts, resulting in low production efficiency and high production cost. 
However, thanks to the rapid advancements in deep learning over past years, automatic HD 
map annotation based on deep learning has shown remarkable progress, presenting the 
potential to enhance map production efficiency and elevate the automation rate. Automatic 
map annotation refers to the utilization of artificial intelligence techniques to automatically 
detect diverse elements in HD maps. 

Currently, there is a dearth of research on the specific issue of automatically annotating 
the HD maps from BEV point cloud images. Existing studies predominantly concentrate on 
particular tasks such as road lane detection [6–8] or road grid detection [9–12]. These 
investigations can be classified into two primary categories: iterative graph growth methods 
[13] and segmentation-based methods. Although iterative graph growth methods ensures 
topology accuracy, they suffer from drawbacks such as low efficiency, limited parallelism, 
and drift, leading to inadequate precision. To overcome these challenges, we employ semantic 
segmentation for automated element labeling. Semantic segmentation is a fundamental 
computer vision task and holds significant important in the production of HD maps for 
autonomous driving. Differing from iterative graph growth methods, semantic segmentation 
operates at the pixel-level level, exhibiting characteristics such as high accuracy and efficient 
production. 

Currently, the conventional approach to semantic segmentation is based on convolutional 
neural networks (CNNs) such as FCN [14], DeepLab [15–18], and U-Net [19]. These networks 
utilize a CNN to extract features from the input sample and subsequently restore the feature 
map size through upsampling. This enables pixel-level classification in an end-to-end manner. 
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However, a limitation of the CNN-based semantic segmentation method is relatively small and 
localized effective receptive field of feature map. Consequently the feature extraction ability 
is restricted, preventing a comprehensive consideration of long-distance pixels dependence 
wihtin the image. 

Transformers [20] have gained widespread usage in natural language processing, 
primarily for their ability to efficiently acquire global information in a parallelized manner. 
Building upon the success of Transformer design in natural language processing, the Vision 
Transformer (ViT) [21] was introduced for image classification. Carion et al. [22] developed 
DETR for object detection, achieving the state-of-the-art performance on public datasets. 
Transformers have also been explored in semantic segmentation with methods like SETR [23] 
and SegFormer [24]. While these approaches have demonstrated impressive results, they do 
have certain limitations. Firstly, SETR, based on ViT, relies on single-scale feature maps for 
predictions instead of leveraging multi-scale information. Secondly, SegFormer adopts the 
main Transformer encoder design but utilizes a simple ALL-MLP decoder for feature 
decoding. 

In this paper, we propose a novel semantic segmentation method called Mapformer for 
automatic HD map annotation, aiming to perceive map elements efficiently. Our proposed 
network takes a BEV point cloud image generated by the MMS as input and directly segment 
map features, including line and area features, from that image. The contributions of this work 
are summarized as follows: 
(1)We propose a new encoder, the convolutional transformer hybrid encoder, to enhance the 
model’s feature extraction capability. 
(2)We propose a multi-level fusion module that enables the model to aggregate diverse levels 
of detail and semantic information. 
(3)We propose a novel decoupled boundary joint decoder that enhances the model's ability to 
handle category boundaries effectively. 

2. Related Work 
HD map annotation plays a crucial role in the rapidly advancing field of autonomous driving, 
with extensive research focusing on various tasks such as object detection [25,26], image 
classification [27], and semantic segmentation [28]. HD maps encompass essential static 
features of the road environment necessary for autonomous driving, including roads, buildings, 
traffic lights, and road markings. They also include semantic objects that may be occluded and 
therefore not directly detectable by sensors. In recent years, HD maps for autonomous driving 
have gained prominence due to their exceptional accuracy and rich geometric semantic 
information. Automatic HD map annotation relies on three primary data sources, which are 
outlined below. 

Map annotation based on 2D aerial imagery involves extracting road marking from aerial 
images, allowing for the efficient extraction and storage of large-scale road markings in HD 
maps , thereby reducing detection time [29]. However, this approach is highly susceptible to 
data defects caused by factors such as lighting conditions, occlusion, and worn road markings. 
While traditional methods have demonstrated significant success in extracting road markings 
from images of sidewalks or concrete roads, mere extraction without correctly identifying the 
various types of road markings falls short in enabling vehicles to comprehend the rules of the 
road. Thanks to the rapid advancements in CNNs, CNN-based methods have emerged and 
gained widespread use in the detection and identification of road markings [30–32]. 

Map annotation based on 3D point cloud extraction involves utilizing LiDAR point cloud 
data, typically employing two annotation methods: the bottom-up method [33–35] and top-
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down method [36,37]. In the bottom-up approach, road markings are directly extracted from 
the original data by segmenting road markings and backgrounds, relying on detection and 
location. This annotation approach is efficient but sensitive to noise present in the raw data. 
On the other hand, the top-down method initially detects predefined geometric models and 
subsequently reconstructs road markings based on the detection results. While this method is 
less affected by noise in the original data, it is more time-consuming due to the extensive 
search space of the model. 

Annotation methods based on 3D point cloud data primarily target stereoscopic objects 
in traffic scenes, including traffic lights, traffic signs, streetlights, trees, and poles. These 
methods are instrumental in object localization and motion planning. 

Map annotation based on in-vehicle vision sensors: These methods [38,39] typically 
leverage image data captured by the vehicle's front view camera or a combination of cameras 
capturing the front, side, and rear views. Such methods enable the detection of the surrounding 
traffic conditions [40]. However, these approaches suffer from low recognition accuracy and 
are unable to address the issue of object occlusion. As a result, they are commonly employed 
for real-time in-car maps generation, bypassing the need for offline maps. 

In comparison to aerial images, the front view image has a narrower field of view, 
resulting in longer detection and processing times for road marker extraction. However, due 
to real-time image acquisition, this approach offers greater flexibility in handing changes to 
road markings, including wear and occlusion. 

Utilizing MLS (Mobile Laser Scanning)3D point clouds for feature extraction offers a 
high-performance approach to enhance HD maps with detailed road information. HD maps 
enriched with extracted 3D features provide depth information and up-to-date environmental 
data. This paper primarily focuses on ground information rather than pole-like targets, 
proposing an automatic HD map annotation method that converts MLS 3D point clouds into 
2D georeferenced grayscale images, known as BEV point cloud maps. This conversion 
leverages the high accuracy and low error of 3D point clouds, significantly reducing 
computational complexity while preserving semantic information. 

Semantic segmentation: Semantic segmentation involves pixel level image classification. 
FCN is a fundamental network architecture designed specifically for semantic segmentation. 
DeepLab v1 utilizes dilated convolutions to enlarge the receptive field while retaining 
resolution and edge information. Additionally, it employs conditional random fields [41] to 
refine boundary details. U-Net emphasizes feature fusion in an FCN, employing a shallow 
network structure to preserve low-level visual information. However, it may not perform 
optimally in semantic segmentation dataset with complex classification tasks. Seg-Net 
improves the upsampling performance by utilizing convolution with trainable decoder filters.  

Dur to the inherent limitations of CNNs, the aforementioned network models struggle to 
capture global features of the input samples. Consequently, much of the existing research in 
this field is dedicated to enhancing feature extraction capabilities by expanding the receptive 
field of the feature map, refining edge information, and devising novel network architectures. 

Thanks to its capability to integrate global information during the feature extraction stage, 
the Transformer emerged as the first to surpass RNNs [42] and LSTMs [43] in machine 
translation tasks. The ViT, initially introduced by Dosovitskiy et al., made its debut in image 
classification by treating images as a sequence of feature tokens and feeding them into 
Transformer modules. Network models based on the Transformer architecture have 
demonstrated state-of-the-art performance across various computer vision tasks, finding 
applications in fields such as autonomous driving, time series forecasting, and medical image 
processing. SETR utilizes the ViT as the encoder for feature extraction, leading to improve 
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semantic segmentation performance. TransUNet [44], on the other hand, leverages the 
Transformer to enhance U-Net's ability for long-distance context modeling, resulting in 
promising outcomes in medical image segmentation. SegFormer has achieved state-of-the-art 
performance on numerous semantic segmentation datasets by enhancing the positional 
embedding coding, reducing time complexity, and preserving local continuity. However, it 
should be noted that SegFormer employs a simple ALL-MLP decoder for feature decoding, 
which may not capture fine-gained segmentation details effectively. 

3 Proposed Method 
The overall pipeline of our proposed method isdepicted in Fig. 1. The main contribution 

of the proposed method is the following three key components: (1) the convolutional 
transformer hybrid encoder, (2) the multi-level fusion module, and (3) decoupled boundary 
joint decoder. 

 
Fig. 1. Overall architecture of the proposed method. The encoder is used to extract image features, and 
the decoder is responsible for segmenting the image. Note that the level of detail segmentation of the 

model on the image is one of the indicators for evaluating the performance of the model. 
 

3.1. Convolutional transformer hybrid encoder 

 
Fig. 2. Structure of the convolutional transformer hybrid encoder. The encoder consists of a 

convolutional transformer part to strengthen the model's ability to extract line features and an efficient 
transformer part to reduce computational complexity. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023                                    2001 

We propose an encoder that consists of convolutional transformer modules and efficient 
transformer modules, as illustrated in Fig. 2. The encoder comprises two modules: an efficient 
transformer and a convolutional transformer, each serving different purposes. The 
convolutional Transformer is employed in the initial two stages (stage 1 and stage 2) of the 
encoder. Unlike the traditional Transformer structure, the convolutional Transformer replaces 
self-attention with a multi-scale convolutional attention module. This module consists of 
multi-branch depth-wise strip convolutions and employs a 1 × 1 convolution for feature 
alignment. The effectiveness of convolutional modules in Transformer structures has been 
demonstrated by SegNeXt [45]. In our proposed method, certain strip-like objects, such as 
lane lines and curbs, are present in the HD maps. Hence, strip convolution can be employed 
to extract shallow feature maps that encompass rich in image detail, facilitating the extraction 
of strip-like features. The feature maps undergo strip convolution operations with varying 
kernel sizes (e.g., 7×1, 11×1, and 21×1), followed by a 1×1 convolution to fuse the features. 
The specific operation can be summarized as follows: 

1 1( ( ))i
i

Conv DWConv Fα ×= ∑                      (1) 

F Fα= ⊗


                                             (2) 
Here, 𝛼𝛼  is the attention weight, 𝐹𝐹  is the feature map, F



is the result of  𝛼𝛼  multiplied 
elementwise with 𝐹𝐹 . 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖  represents two DWConv operations with different 
convolution kernel sizes, for example, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 denotes 1×7 depth-wise convolution and 
7×1 depth-wise convolution. 

The efficient transformer is utilized in the final two stages (stage 3 and stage 4) of the 
encoder to enhance the model’s global attention. This module replaces the traditional self-
attention module with an efficient self-attention mechanism, aiming to decrease computational 
complexity while maintaining accuracy. The efficient Transformer employs a scale parameter 
S to govern the input vector’ size. Specifically, 

( ) HWI Reshape I from HW C to C S
S

∧

=  ×   ×


                 (3) 

( ) HW HWI Linear I from C S to C
s S

=  ×   ×


                   (4) 

Here, I


is the original input sample with dimensions 𝐻𝐻𝐻𝐻 × 𝐶𝐶. Moreover, 𝐼𝐼 is the input 
sample after dimensionality reduction. Its dimensions are 𝐻𝐻𝐻𝐻

𝑆𝑆
× 𝐶𝐶. Compared with the time 

complexity of the traditional self-attention module, the time complexity is reduced 
from 𝑂𝑂(𝑁𝑁2) to 𝑂𝑂(𝑁𝑁

2

𝑆𝑆
).  

 
3.2. Multi-level Fusion 
 

We have developed a multi-level fusion module to effectively capture high-level 
semantics and restore the original image details, which is integrated into the encoder. As 
depicted in Fig. 2, we conducted evaluations on three feature fusion methods. The CNN-based 
models employ a single structure to capture high-level semantics. Furthermore, SegFormer 
incorporates an MLP to fuse features from various feature layer outputs, aiming to design a 
compact decoder. However, this approach compromises the network's capability to extract fine 
details. To address this issue, we propose the multi-level fusion module, which maximizes the 
utilization of features. 



2002                                                                  Liang et al.: Bird's Eye View Semantic Segmentation based on Improved  
Transformer for Automatic Annotation Hong et al.: paper title 

 
Fig. 3. Three decoder designs. (a) Structure of CNN-based model (b) Structure of Segformer  

(c) Structure of multi-level fusion Module. 
 

Traditionally, prior studies have commonly employed bilinear interpolation for 
upsampling. In contrast, we enhance our model’s ability to restore intricate details by replacing 
the upsampling component with a transposed convolution. 

We employ transposing convolution to upsample the feature map from stage 4 of the 
encoder. This upsampled feature map is then fused with the feature map from stage 3, resulting 
in a new feature map for stage 3. Similarly, we perform the same operation between stages 3 
and 2. Next, the feature map data from these three levels (stage 2 to stage 4) are aligned, 
concatenated, and fused using an MLP layer. The resulting feature map contains a 
comprehensive representation of both low-level detail information and high-level semantic 
information. 
 
3.3. Decoupled Boundary Joint Decoder 
 

 
Fig. 4. Structure of the decoupled boundary joint decoder. The decoder adds a boundary supervision 

branch to improve the model's ability to restore category boundary details. 
 

HD maps encompass a significant quantity of strip-like objects, and current segmentation 
networks prove inadequate in accurately segmenting fine image details. These networks often 
exhibit incorrect segmentation of slender objects like lane lines, leading to blurred 
classification boundary between distinct categories. The downsampling operation in FCNs 
contributes to imprecise predictions, while SegFormer’s lightweight decoder and bilinear 
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interpolation upsampling hinder detail restoration. Consequently, the segmentation boundaries 
of the predictions tend to be blurry, thus compromising overall performance. To address these 
challenges, we introduce the decoupled boundary joint decoder, as illustrated in Fig. 4, which 
effectively resolves the aforementioned issues.  

We decouple the high-frequency information from the image as boundary features and 
incorporate a dedicated branch in the decoder to oversee these boundary features. 
Subsequently, we generate a combined feature map consisting of the predicted feature map of 
high-frequency information and the feature map from the main branch. The main branch 
receives features from feature map 1 as well as the boundary supervision branch. The boundary 
features are carefully supervised using boundary masks, enabling the model to learn accurate 
boundary predictions, while the main branch is responsible for outputting comprehensive 
segmentation results.  

We simultaneously supervise both the main and boundary branches. In the boundary 
module, we predict a boundary map 𝑦𝑦𝑙𝑙 that encompasses all the outlines of the categories. The 
loss function defined as follows 

1 ( , ) ( , )m gt l gt
main edge eL L y y L y yλ λ= +                                          (5) 

where 𝑦𝑦𝑔𝑔𝑔𝑔 represents the groundtruth semantic labels and 𝑦𝑦𝑒𝑒
𝑔𝑔𝑔𝑔 represents the groundtruth 

boundary masks labels. In addition, 𝑦𝑦𝑚𝑚 and 𝑦𝑦𝑙𝑙 denote the segmentation map predictions from 
the main branch and boundary branch, respectively. Finally, 𝜆𝜆1 and λ  are hyperparameters 
controlling the weights. 

3.4. Efficient Data Augmentation 
We employed various traditional data augmentation methods, including random resizing, 

random horizontal flipping, and random cropping. Since BEV point cloud images are 
grayscale, we utilized CLAHE to equalize the histogram of the image, making the element 
information more distinct. The enhanced result is depicted in Fig. 5. 

During the training process, each batch comprises two components, one consists of 
samples processed as described above, and the other consists of samples after 
AutoAugmentation. 

Furthermore, upon analyzing the dataset and the training model, we identified certain 
categories that present challenges in learning due to there small areas (special lane lines) or 
blurred boundaries with other categories (such as double solid lines or one real and one virtual 
double dashed line). To address this, we curated a set of challenging cases and introduced a 
10% resampling probability during training to include these data points in the training set. 

The experiments demonstrate effectiveness of our data augmentation method without 
introducing additional time complexity. 
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Fig. 5. Efficient data augmentation. The element information is clearer. 

4. Expriments 

4.1. Datasets 
The BEV point cloud image dataset consists of 10,000 single-channel grayscale images 

with a resolution of 1536×1536. These images were derived from preprocessed point cloud 
data collected by a LiDAR system equipped with a MMS. The generation process of BEV 
point cloud images is illustrated in Fig. 6. The dataset encompasses a total of 16 categories, 
which are further classified into the following classes: invalid, pavement, non-road, single 
solid line, double solid line, single dashed line, double dashed line, fence double line, one real 
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and one virtual, special lane line, horizontal marking, other line, green belt in the road, no-
stopping area, zebra crossing, and diversion area. For test set, we randomly selected 800 
images. Additionally, to assess the model’s generalization, we conducted a comparative 
evaluation on the publicly available Cityscapes dataset [46]. 

 
Fig. 6. Our BEV point cloud images dataset. (Left) Original images and (right) the groundtruth. 

4.2. Implementation details 
 
We utilized PyTorch and PaddleSeg [47] to implement and train our model using four 

Tesla T4s. The convolutional transformer hybrid encoder and multi-level fusion components 
were pre-trained on the ImageNet-1K dataset, while parameter initialization in the decoupled 
boundary joint decoder was performed using Xavier initialization. The AdamW [48] optimizer 
was employed, with an initial learning rate of 6×10−5 and a polynomial decay learning rate 
scheduler. The images are resized to 1024×1024 while preserving their aspect ratio. All models 
underwent training for 200,000 iterations. 

4.3. Evaluation metrics 
For quantitative evaluation, we measured the accuracy, Dice coefficient, mIoU, and kappa 

of the segmentation results and the groundtruth. 
Accuracy is the overall classification accuracy. 

TP TNAcc
TP FP TN FN

+
=

+ + +
                                                 (6) 

The Dice coefficient is used to measure the similarity between the groundtruth and 
predicted results. 

2
2
TPDice

FN TP FP
=

+ +                                                        (7) 
The mIoU calculates the coincidence ratio of the intersection of two sets and their union. 

TPmIoU
FN TP FP

=
+ +                                                              (8) 

The kappa coefficient judges the classification accuracy based on the confusion matrix, 
which is often used for consistency testing. 
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Here, 𝑝𝑝𝑜𝑜 is the number of correctly classified samples in the confusion matrix (values on 
the diagonal) divided by the number of all samples. In addition, 𝑝𝑝𝑒𝑒 is the sum of the real value 
of each class in the confusion matrix and the predicted value of each class divided by the 
square of the total number of samples. 

4.4. Ablation Studies 
We first evaluated the effectiveness of the various proposed units as presented in Table 

1. The convolutional transformer hybrid encoder (CTHE), multi-level fusion, decoupled 
boundary joint decoder (DBJD) and data augmentation modules were incrementally 
incorporated into SegFormer. This allowed us to evaluate the generalization capability of the 
proposed method and its detection performance in traffic scenes. 

Table 1. Proposed modules evaluated in the ablation study. 

Method Kappa Dice mIoU 
Segformer 0.8509 0.6691 0.5479 

+ CTHE 0.8583 0.6748 0.5516 
+ Multi-level Fusion 0.8627 0.6814 0.5547 

+ DBJD 0.8642 0.6853 0,5583 
+ Data Augmentation 0.8714 0.6902 0.5626 

 
Furthermore, we conducted a comparetive analysis of various state-of-the-art encoders 

on the ImageNet validation dataset. As illustrated in Table 2, we compared the proposed 
CTHE with CNN-based and Transformer-based classification models, which have recently 
demonstrated outstanding performance. The results presented in Table 2 clearly indicate that 
CTHE outperforms the other models, showcasing its superior performance. 

Table 2. Comparison of the proposed method with state-of-the-art encoders on the ImageNet 
validation set. 

 
Table 3 demonstrates the utilization of transposed convolution, nearest neighbor, and 

bilinear upsampling methods in the multi-level fusion module. The experimental results 
substantiate that the use using transposed convolution yields superior results, suggesting its 
effectiveness in restoring the details of the original image. 

Table 3. Upsampling ablation study. 

Method mIoU Δ (%) 
Ours. (trans-conv) 0.5626 - 
nearest neighbor 0.5274 -3.52 

bilinear 0.5583 -0.43 

Method Params. (M) Top-1 Acc. (%) 
Vit-B/16 86 77.9 

Swin-S[49] 50 83.0 
MiT-B3 45 83.1 

ConvNeXt-S[50] 45 83.1 
CTHE 45 83.5 
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In the convolutional transformer hybrid encoder, we investigated the significance of the 
two modules: efficient transformer and convolutional transformer, as indicated in Table 4. By 
removing and interchanging these modules, we observed that both of them hold pivotal roles 
in feature extraction. Furthermore, the convolutional transformer excels in capturing 
information related to strip-like objects and category boundaries while extracting low-level 
feature maps. 

Table 4. Ablation study results for the convolutional transformer hybrid encoder. 

Method mIoU Line-class 
mIoU 

mIoU Δ 
(%) 

CTHE 0.5626 0.5202 - 
w/o efficient transformer  0.5614 0.5201 -0.12 

w/o convolutional 
transformer 

0.5562 0.5125 -0.64 

Swap two module 0.5597 0.5175 -0.29 
 

In Table 5, we investigated the efficacy of boundary supervision. For both the CNN-
based models (DDRNet and BiSeNet) and the Transformer-based model (SegFormer), 
incorporating distinct boundary supervision into the head resulted in enhanced performance. 

Table 5. Ablation study results for boundary branch supervision. 

 
The feature maps of the main branch comprise three components: the feature derived from 

multi-level fusion, the boundary feature from the boundary supervision branch, and feature 
map 1. We illustrate the impact of the information contained in these three feature maps on 
the main branch. The boundary feature contributes edge information, while feature map 1 
preserves detail information from the original image. As demonstrated in Table 6, omitting 
both components leads to a notable decrease in model performance, particularly in the 
segmentation of strip-like objects. The line mIoU decreases from 52.02% to 48.33% when 
both features are removed. 

Table 6. Ablation study results for main branch supervision. 

Method mIoU Line mIoU Line mIoU Δ 
(%) 

Original method 0.5626 0.5202 - 
w/o Boundary feature 0.5411 0.5035 -1.67 

w/o Feature map 1 0.5473 0.4982 -2.20 
w/o Both 0.5129 0.4833 -3.69 

 

Method Acc Kappa Dice mIoU 
DDRNet[51] 0.8427 0.7708 0.6301 0.5052 

+ Boundary sup. 0.8431 0.7865 0.6306 0.5196 
BiSeNet[52] 0.8265 0.7467 0.5671 0.4482 

+ Boundary sup. 0.8283 0.7535 0.5685 0.4738 
Segformer 0.9330 0. 8509 0.6691 0.5479 

+ Boundary sup. 0.9337 0. 8583 0.6743 0.5541 
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4.5. Comparative results 

4.5.1. The quantitative comparative results 
We conducted a comparison of various methods and presented the mIoU scores for each 

category in Table 7. Our method attains state-of-the-art results in the majority of categories. 

Table 7. Per-category performance comparison of different models. 

 Category/Method DDRNet STDC2 Segformer Ours 

mIoU 

Invalid class 0.794 0.7737 0.9213 0.9219 

Line 

single_solid_line 0.3937 0.342 0.4261 0.441 
double_solid_line 0.1681 0.2065 0.4245 0.4363 

single_dashed_line 0.4247 0.3583 0.5313 0.5257 
double_dashed_line 0.0037 0.0050 0.1004 0.1745 

dashed_and_solid_line 0.1894 0.0903 0.2074 0.3284 
special_line 0.6776 0.6571 0.6041 0.6174 

stop_line 0.532 0.4073 0.2649 0.2564 

Surface 

paved_road 0.8559 0.8457 0.8411 0.8415 
no_stop_zone 0.6349 0.6265 0.786 0.7776 
zebra_crossing 0.8403 0.8372 0.7906 0.7945 
diagonal_line 0.4879 0.5062 0.653 0.6174 

 
Table 8 presents the results achieved on our BEV point cloud image dataset using both 

CNN-based and Transformer-based methods. Our model demonstrates competitive 
performance, with accuracy, kappa, Dice, and mIoU scores of 95.26%, 87.14%, 69.02%, and 
56.26%, respectively. 

Table 8. Comparison results for different models on the BEV point cloud image dataset. 

Method Acc Kappa Dice mIoU 
STDC2[53] 0.8295 0.7520 0.5871 0.4640 
DDRNet 0.8427 0.7708 0.6301 0.5052 
BiSeNet 0.8265 0.7467 0.5671 0.4482 

DNLNet[54] 0.8193 0.7357 0.5760 0.4534 
Segformer 0.9330 0.8509 0.6691 0.5479 

Ours. 0.9526 0.8714 0.6902 0.5626 
 

The proposed method was additionally assessed on the Cityscapes dataset. As shown in 
Table 9, our model outperforms other methods, delivering superior results. 
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Table 9. Comparison results for different models on the Cityscapes dataset. 

 
4.5.2. Qualitative analysis of different models 

Model robustness and finer details are crucial aspects of semantic segmentation. The 
visualization of results from our model and SegFormer can be observed in Fig. 7 and Fig. 8. 
Notably, SegFormer struggles in effectively handle single and double lines, exhibiting 
intermittent segmentation on single lines, and encountering challenges with double lines. In 
contrast, our model adeptly extracts features of strip-like objects and accurately segment them. 

 
Fig. 7. Qualitative comparison of SegFormer and our model on single lines. 

Method Backbone mIoU (%) 
STDC2 STDC2 77.60 

FCN HRNet_W18 78.97 
DDRNet ddrnet 79.85 

Deeplabv3 ResNet50_OS8 79.90 
 ResNet101_OS8 80.85 

SETR ViT-L 77.29 
Segformer MiT-B3 82.47 

Ours. CTHE 82.93 
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Fig. 8. Qualitative comparison of SegFormer and our model on double lines. 

The results of our model and the CNN-based model DDRNet are visualized in Fig. 9 and 
Fig. 10. Notably, our model exhibits excellent performance in accurately segmenting lane lines 
even in scenarios with vehicle occlusion. Additionally, when it comes to large-scale surface 
segmentations, our model surpasses the CNN-based mode by effectively distinguishing 
various types of regions, thanks to its ability to reduce detail and extract features. 

 
Fig. 9. Qualitative comparison of DDRNet and our model in the scene of vehicle occlusion. 
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Fig. 10. Qualitative comparison of DDRNet and our model in surface segmentation task. 

5. Conclusion 
HD maps play a vital role in autonomous driving system, but their annotation currently 

relies on inefficient manual methods. In this paper, we proposed a novel semantic 
segmentation method called Mapformer for automatic HD map annotation. Our approach 
involves a carefully designed an encoder-decoder architecture that enhances feature extraction 
for strip-like objects and category boundaries, while also improving the model's ability to 
restore details. By achieving an mIoU of 56.26%, Mapformer outperforms SegFormer, setting 
a new state-of-the-art performance benchmark. With its potential to automate HD map 
annotation, Mapformer holds promise for significantly improving the annotation automation 
rate. However, our model still has some limitations, such as insufficient segmentation ability 
for hard samples and tail categories. Going forward, our future research will focus on 
addressing these limitations by exploring techniques for hard sample mining and addressing 
long-tail distributions challenges. 
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